STEREOCHEMICAL ELUCIDATION OF ISOMERIC TRICYCLIC 1,4-BENZODIOXANS (II)¹ BY THE USE OF THE NMR SHIFT REAGENT, Eu(fod)₃

James F. Caputo and Arnold R. Martin

College of Pharmacy

Washington State University

Pullman, Washington 99163 (Received in USA 8 September 1971; received in UK for publication 25 October 1971)

Recently the use of two new shift reagents, $Eu(fod)_3$ and $Pr(fod)_3$, have been reported by Rondeau and Sievers.² The advantage of these as shift reagents is due to their relatively high solubility in nonalcholic solvents and to the fact that neither $Eu(fod)_3$ nor $Pr(fod)_3$ contribute to peak broadening.²

In a research program leading to the development of potentially useful medicinal tricyclic benzodioxans, the <u>cis(I)</u> and <u>trans(II)</u>-isomers were prepared.¹

In order to differentiate between I and II $Eu(fod)_3$ was used to shift the peaks so that the coupling constants for the ring fusion protons could be measured. The coupling constants together with relative shifts for various protons in I and II allow the stereochemistry to be assigned.^{3,4,5,6} It can be seen from shifted spectra (A and C of Fig. 1) that the fusion protons have been clearly shifted from each other. On the other hand, overlap of the fusion

Figure 1. 60 MHz Spectra of <u>cis</u>- and <u>trans</u>-tricyclic benzodioxans.

- A: Spectrum of I plus $Eu(fod)_3$ in CDC1₃ (9.4 x 10⁻³ moles $Eu(fod)_3/\underline{cis}$ I)
- B: Spectrum of I in CDC1₃ (8.8 x 10^{-5} moles cis)
- C: Spectrum of II plus Eu(fod)₃ in CDCl₃ (7.2 x 10⁻² moles Eu(fod)₃:<u>trans</u> II)
- D: Spectrum of II in $CDCl_3$ (7.25 x 10^{-5} moles trans)

The proton assignment was based on decoupling at 60 MHz.

												_	
	Proton	н1	Н2	н3	H4	н5	н6	H7	H8	Hg	H ₁₀	NCH3	mole ratio Eu(fod) ₃ : I and II
I .						+							
Chemical shifts*	(Hz)	420	410	410	410	280'	138	138	206	206	280	177	
Paramagnetic shifts	(Hz)	825	546	575	575	537	320	320	475	475	694	451	1.1
 II						·							
Chemical shifts*	(Hz)	430	413	413	413	256 [†]	140	140	206	206	256 [†]	181	
Paramagnetic shifts	(Hz)	1100	543	510	510	573	308	308	360	360	1008	143	1.2

Table I. Chemical and Paramagnetic Shifts with Eu(fod)3

*Downfield from internal TMS.

[†]Shift values only approximate due to overlap.

protons in the unshifted spectra (B and D of Fig. 1) makes a clear stereochemical assignment impossible. In the <u>trans</u>-isomer the coupling constant for the fusion protons, $J_{5,10}$, is 9.5 Hz. For the <u>cis</u>-isomer, $J_{5,10}$ is 3 Hz at low mole ratios (<0.48) of Eu(fod)₃ to <u>cis</u>-isomer. At high mole ratios (>0.48), however, $J_{5,10}$ is 8 Hz. That the <u>trans</u>-isomer does <u>not</u> show any change in the coupling constant for the fusion protons is in good agreement with the rigidity one would associate with the <u>trans</u>-isomer.

The maximum chemical shifts obtained with I and II are shown in Table I. It is of interest to note that H_1 shifts a great deal more downfield in the <u>trans</u>-isomer than it does in the <u>cis</u>-isomer. It should also be noted that the NCH₃ in the <u>trans</u>-isomer shifts much less than it does in the <u>cis</u>-isomer while H_{10} in the <u>trans</u>-isomer shifts much more in the <u>cis</u>-isomer. This data is consistent with the predictions based on Dreiding models.

In the <u>cis</u>-isomer the change in the coupling constant appears to be the result of two sets of competing equilibria, the conformational equilibria and the exchange equilibria between $Eu(fod)_3$ and the <u>cis</u>-isomer. At high $Eu(fod)_3$ mole ratios conformational changes in the <u>cis</u>-isomer become slow with respect to the exchange rate and thus a particular conformer is favored over all others.⁷ It is apparent that care must be exercised in assigning stereo-chemistry on the basis of coupling constants alone when shift reagents are employed in obtaining them.

<u>Acknowledgement</u>: This research was supported in part by National Institutes of Health General Research Support Grant No. FR 05686.

REFERENCES

- 1. Part I of this series which describes the synthesis will be published elsewhere.
- 2. R. E. Rondeau and R. E. Sievers, J. Amer. Chem. Soc. 93, 1522 (1971).
- 3. T. Okutani, A. Morimoto, T. Kaneko, and K. Masuda, <u>Tetrahedron Letters</u>, 1115 (1971).
- 4. D. C. Remy and W. A. Van Saun, Jr., Tetrahedron Letters, 2463 (1971).
- 5. P. BéLanger, C. Freppel, D. Tizane, and J. C. Richer, <u>Canadian Journal of Chemistry</u>, 49, 1985 (1971).
- 6. J. K. M. Sanders and D. H. Williams, J. Amer. Chem. Soc. 93, 641 (1970).
- Several equilibrating conformations of the <u>cis</u>-isomer may actually exist in the complex with Eu(fod)₃. In any case, the large value of J_{5,10} indicates a dihedral angle approaching 0° for the <u>cis</u>-isomer at high Eu(fod)₃ mole fractions.